
NAG C Library Function Document

nag_dorgbr (f08kfc)

1 Purpose

nag_dorgbr (f08kfc) generates one of the real orthogonal matrices Q or PT which were determined by
nag_dgebrd (f08kec) when reducing a real matrix to bidiagonal form.

2 Specification

void nag_dorgbr (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n,
Integer k, double a[], Integer pda, const double tau[], NagError *fail)

3 Description

nag_dorgbr (f08kfc) is intended to be used after a call to nag_dgebrd (f08kec), which reduces a real

rectangular matrix A to bidiagonal form B by an orthogonal transformation: A ¼ QBPT . nag_dgebrd

(f08kec) represents the matrices Q and PT as products of elementary reflectors.

This function may be used to generate Q or PT explicitly as square matrices, or in some cases just the

leading columns of Q or the leading rows of PT .

The various possibilities are specified by the parameters vect, m, n and k. The appropriate values to cover
the most likely cases are as follows (assuming that A was an m by n matrix):

1. To form the full m by m matrix Q:

nag_dorgbr (order,Nag_FormQ,m,m,n,...)

(note that the array a must have at least m columns).

2. If m > n, to form the n leading columns of Q:

nag_dorgbr (order,Nag_FormQ,m,n,n,...)

3. To form the full n by n matrix PT :

nag_dorgbr (order,Nag_FormP,n,n,m,...)

(note that the array a must have at least n rows).

4. If m < n, to form the m leading rows of PT :

nag_dorgbr (order,Nag_FormP,m,n,m,...)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kfc

[NP3645/7] f08kfc.1

2: vect – Nag_VectType Input

On entry: indicates whether the orthogonal matrix Q or PT is generated as follows:

if vect ¼ Nag FormQ, Q is generated;

if vect ¼ Nag FormP, PT is generated.

Constraint: vect ¼ Nag FormQ or Nag FormP.

3: m – Integer Input

On entry: the number of rows of the orthogonal matrix Q or PT to be returned.

Constraint: m � 0.

4: n – Integer Input

On entry: the number of columns of the orthogonal matrix Q or PT to be returned.

Constraints:

n � 0;
if vect ¼ Nag FormQ and m > k, m � n � k;
if vect ¼ Nag FormQ and m � k, m ¼ n;
if vect ¼ Nag FormP and n > k, n � m � k;
if vect ¼ Nag FormP and n � k, n ¼ m.

5: k – Integer Input

On entry: if vect ¼ Nag FormQ, the number of columns in the original matrix A; if
vect ¼ Nag FormP, the number of rows in the original matrix A.

Constraint: k � 0.

6: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.

On entry: details of the vectors which define the elementary reflectors, as returned by nag_dgebrd
(f08kec).

On exit: the orthogonal matrix Q or PT , or the leading rows or columns thereof, as specified by
vect, m and n.

7: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor, pda � maxð1;mÞ;
if order ¼ Nag RowMajor, pda � maxð1;nÞ.

8: tau½dim� – const double Input

Note: the dimension, dim, of the array tau must be at least maxð1;minðm; kÞÞ when
vect ¼ Nag FormQ and at least maxð1;minðn; kÞÞ when vect ¼ Nag FormP.

On entry: further details of the elementary reflectors, as returned by nag_dgebrd (f08kec) in its
parameter tauq if vect ¼ Nag FormQ, or in its parameter taup if vect ¼ Nag FormP.

f08kfc NAG C Library Manual

f08kfc.2 [NP3645/7]

9: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, k = hvaluei.
Constraint: k � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.
On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ENUM_INT_3

On entry, vect ¼ hvaluei, m ¼ hvaluei, n ¼ hvaluei, k ¼ hvaluei.
Constraint: n � 0 and if vect ¼ Nag FormQ and m > k, m � n � k;
if vect ¼ Nag FormQ and m � k, m ¼ n;
if vect ¼ Nag FormP and n > k, n � m � k;
if vect ¼ Nag FormP and n � k, n ¼ m.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

kEk2 ¼ Oð�Þ;

where � is the machine precision. A similar statement holds for the computed matrix PT .

8 Further Comments

The total number of floating-point operations for the cases listed in Section 3 are approximately as follows:

1. To form the whole of Q:

4
3
nð3m2 � 3mnþ n2Þ if m > n,

4
3
m3 if m � n;

2. To form the n leading columns of Q when m > n:

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kfc

[NP3645/7] f08kfc.3

2
3
n2ð3m� nÞ;

3. To form the whole of PT :

4
3
n3 if m � n,

4
3
mð3n2 � 3mnþm2Þ if m < n;

4. To form the m leading rows of PT when m < n:

2
3
m2ð3n�mÞ.

The complex analogue of this function is nag_zungbr (f08ktc).

9 Example

For this function two examples are presented, both of which involve computing the singular value
decomposition of a matrix A, where

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35

�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13

�0:02 1:03 �1:43 0:50

1
CCCCCCA

0
BBBBBB@

in the first example and

A ¼

�5:42 3:28 �3:68 0:27 2:06 0:46
�1:65 �3:40 �3:20 �1:03 �4:06 �0:01
�0:37 2:35 1:90 4:31 �1:76 1:13
�3:15 �0:11 1:99 �2:70 0:26 4:50

1
CCA

0
BB@

in the second. A must first be reduced to tridiagonal form by nag_dgebrd (f08kec). The program then

calls nag_dorgbr (f08kfc) twice to form Q and PT , and passes these matrices to nag_dbdsqr (f08mec),
which computes the singular value decomposition of A.

9.1 Program Text

/* nag_dorgbr (f08kfc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, ic, j, m, n, pda, pdc, pdu, pdvt, d_len;
Integer e_len, tauq_len, taup_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *c=0, *d=0, *e=0, *taup=0, *tauq=0, *u=0, *vt=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define VT(I,J) vt[(J-1)*pdvt + I - 1]

f08kfc NAG C Library Manual

f08kfc.4 [NP3645/7]

#define U(I,J) u[(J-1)*pdu + I - 1]
order = Nag_ColMajor;

#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define VT(I,J) vt[(I-1)*pdvt + J - 1]
#define U(I,J) u[(I-1)*pdu + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08kfc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

for (ic = 1; ic <= 2; ++ic)
{

Vscanf("%ld%ld%*[^\n] ", &m, &n);
d_len = n;

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdc = n;
pdu = m;
pdvt = m;
e_len = n-1;
tauq_len = n;
taup_len = n;

#else
pda = n;
pdc = n;
pdu = n;
pdvt = n;
e_len = n-1;
tauq_len = n;
taup_len = n;

#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) ||

!(c = NAG_ALLOC(n * n, double)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(taup = NAG_ALLOC(taup_len, double)) ||
!(tauq = NAG_ALLOC(tauq_len, double)) ||
!(u = NAG_ALLOC(m * n, double)) ||
!(vt = NAG_ALLOC(m * n, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");
/* Reduce A to bidiagonal form */
f08kec(order, m, n, a, pda, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
if (m >= n)

{
/* Copy A to VT and U */
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kfc

[NP3645/7] f08kfc.5

VT(i,j) = A(i,j);
}

for (i = 1; i <= m; ++i)
{

for (j = 1; j <= MIN(i,n); ++j)
U(i,j) = A(i,j);

}
/* Form P**T explicitly, storing the result in VT */
f08kfc(order, Nag_FormP, n, n, m, vt, pdvt, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Form Q explicitly, storing the result in U */
f08kfc(order, Nag_FormQ, m, n, n, u, pdu, tauq, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute the SVD of A */
f08mec(order, Nag_Upper, n, n, m, 0, d, e, vt, pdvt, u,

pdu, c, pdc, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08mec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print singular values, left & right singular vectors */
Vprintf("\nExample 1: singular values\n");
for (i = 1; i <= n; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0?"\n":" ");
Vprintf("\n\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

n, n, vt, pdvt,
"Example 1: right singular vectors, by row", 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, u, pdu,
"Example 1: left singular vectors, by column", 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

else
{

/* Copy A to VT and U */
for (i = 1; i <= m; ++i)

{
for (j = i; j <= n; ++j)

VT(i,j) = A(i,j);
}

for (i = 1; i <= m; ++i)
{

for (j = 1; j <= i; ++j)

f08kfc NAG C Library Manual

f08kfc.6 [NP3645/7]

U(i,j) = A(i,j);
}

/* Form P**T explicitly, storing the result in VT */
f08kfc(order, Nag_FormP, m, n, m, vt, pdvt, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Form Q explicitly, storing the result in U */
f08kfc(order, Nag_FormQ, m, m, n, u, pdu, tauq, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute the SVD of A */
f08mec(order, Nag_Lower, m, n, m, 0, d, e, vt, pdvt, u,

pdu, c, pdc, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08mec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print singular values, left & right singular vectors */
Vprintf("\nExample 2: singular values\n");
for (i = 1; i <= m; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\n\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, vt, pdvt,
"Example 2: right singular vectors, by row", 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, m, u, pdu,
"Example 2: left singular vectors, by column", 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

END:
if (a) NAG_FREE(a);
if (c) NAG_FREE(c);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);
if (u) NAG_FREE(u);
if (vt) NAG_FREE(vt);

}
return exit_status;

}

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kfc

[NP3645/7] f08kfc.7

9.2 Program Data

f08kfc Example Program Data
6 4 :Values of M and N, Example 1

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A
4 6 :Values of M and N, Example 2

-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

9.3 Program Results

f08kfc Example Program Results

Example 1: singular values
3.9987 3.0005 1.9967 0.9999

Example 1: right singular vectors, by row
1 2 3 4

1 0.8251 -0.2794 0.2048 0.4463
2 -0.4530 -0.2121 -0.2622 0.8252
3 -0.2829 -0.7961 0.4952 -0.2026
4 0.1841 -0.4931 -0.8026 -0.2807

Example 1: left singular vectors, by column
1 2 3 4

1 -0.0203 0.2794 0.4690 0.7692
2 -0.7284 -0.3464 -0.0169 -0.0383
3 0.4393 -0.4955 -0.2868 0.0822
4 -0.4678 0.3258 -0.1536 -0.1636
5 -0.2200 -0.6428 0.1125 0.3572
6 -0.0935 0.1927 -0.8132 0.4957

Example 2: singular values
7.9987 7.0059 5.9952 4.9989

Example 2: right singular vectors, by row
1 2 3 4 5 6

1 -0.7933 0.3163 -0.3342 -0.1514 0.2142 0.3001
2 0.1002 0.6442 0.4371 0.4890 0.3771 0.0501
3 0.0111 0.1724 -0.6367 0.4354 -0.0430 -0.6111
4 0.2361 0.0216 -0.1025 -0.5286 0.7460 -0.3120

Example 2: left singular vectors, by column
1 2 3 4

1 0.8884 0.1275 0.4331 0.0838
2 0.0733 -0.8264 0.1943 -0.5234
3 -0.0361 0.5435 0.0756 -0.8352
4 0.4518 -0.0733 -0.8769 -0.1466

f08kfc NAG C Library Manual

f08kfc.8 (last) [NP3645/7]

	f08kfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

