f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8kfc

NAG C Library Function Document
nag_dorgbr (f08kfc)

1 Purpose

nag_dorgbr (fO8kfc) generates one of the real orthogonal matrices @ or P’ which were determined by
nag_ dgebrd (f08kec) when reducing a real matrix to bidiagonal form.

2 Specification

void nag_dorgbr (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n,
Integer k, double a[], Integer pda, const double tau[], NagError *fail)

3 Description

nag_dorgbr (fO8kfc) is intended to be used after a call to nag dgebrd (f08kec), which reduces a real
rectangular matrix A to bidiagonal form B by an orthogonal transformation: A = QBP’. nag dgebrd
(fO8kec) represents the matrices () and PT as products of elementary reflectors.

This function may be used to generate @ or P’ explicitly as square matrices, or in some cases just the
leading columns of @ or the leading rows of P’.

The various possibilities are specified by the parameters vect, m, n and k. The appropriate values to cover
the most likely cases are as follows (assuming that A was an m by n matrix):

1. To form the full m by m matrix Q:
nag_dorgbr (order,Nag_FormQ,m,m,n,...)
(note that the array a must have at least m columns).
2. If m > n, to form the n leading columns of Q:
nag_dorgbr (order,Nag_FormQ,m,n,n,...)
3. To form the full n by n matrix P’:
nag_dorgbr (order,Nag_FormP,n,n,m,...)
(note that the array a must have at least n rows).

4. If m < n, to form the m leading rows of PT.

nag_dorgbr (order,Nag_FormP,m,n,m,...)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] f08kfe. 1

fO8kfc NAG C Library Manual

2: vect — Nag VectType Input
On entry: indicates whether the orthogonal matrix Q or P’ is generated as follows:

if vect = Nag_FormQ, () is generated;

if vect = Nag_FormP, P’ is generated.

Constraint. vect = Nag FormQ or Nag FormP.

3: m — Integer Input
On entry: the number of rows of the orthogonal matrix () or P to be returned.

Constraint: m > 0.

4: n — Integer Input
On entry: the number of columns of the orthogonal matrix Q or P’ to be returned.

Constraints:

n > 0;

if vect = Nag FormQ and m > k, m > n > k;
if vect = Nag FormQ and m < k, m = n;

if vect = Nag FormP and n > k, n > m > k;
if vect = Nag_FormP and n <k, n = m.

5: k — Integer Input

On entry: if vect = Nag FormQ, the number of columns in the original matrix A; if
vect = Nag_FormP, the number of rows in the original matrix A.

Constraint: k > 0.

6: a[dim] — double Input/Output

Note: the dimension, dim, of the array a must be at least max(l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag dgebrd
(fO8kec).

On exit: the orthogonal matrix Q or P’, or the leading rows or columns thereof, as specified by
vect, m and n.

7: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag RowMajor, pda > max(1,n).
8: tau[dim] — const double Input

Note: the dimension, dim, of the array tau must be at least max(l, min(m,k)) when
vect = Nag FormQ and at least max(1, min(n, k)) when vect = Nag_FormP.

On entry: further details of the elementary reflectors, as returned by nag dgebrd (f08kec) in its
parameter tauq if vect = Nag_FormQ, or in its parameter taup if vect = Nag_FormP.

f08kfe.2 [NP3645/7]

f08 — Least-squares and FEigenvalue Problems (LAPACK) fO8kfc

9: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, k = (value).
Constraint: k > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

NE_ENUM_INT 3

On entry, vect = (value), m = (value), n = (value), k = (value).
Constraint: n > 0 and if vect = Nag FormQ and m > k, m > n > k;
if vect = Nag FormQ and m < k, m = n;

if vect = Nag FormP and n > k, n > m > k;

if vect = Nag_FormP and n <k, n = m.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed matrix @) differs from an exactly orthogonal matrix by a matrix F such that
1E]l, = O(e),

where ¢ is the machine precision. A similar statement holds for the computed matrix PT.

8 Further Comments

The total number of floating-point operations for the cases listed in Section 3 are approximately as follows:
1. To form the whole of Q:

4n(3m® — 3mn +n®) if m > n,
%‘m3 if m <n;

2. To form the n leading columns of () when m > n:

[NP3645/7] f08kfc.3

fO8kfc

%n2(3m —n);

3. To form the whole of P:

%n3 if m>n,

dm(3n® = 3mn +m?) if m < n;

4. To form the m leading rows of P* when m < n:

%mz(Sn —m).

The complex analogue of this function is nag zungbr (fO8ktc).

9 Example

NAG C Library Manual

For this function two examples are presented, both of which involve computing the singular value

decomposition of a matrix A, where

—0.57 —1.28

—1.93 1.08

A= 230 024
—-1.93 0.64

0.15 0.30

—0.02 1.03

in the first example and

—5.42 3.28 —3.68
—1.65 —-3.40 -3.20

A=1 _037 235

-3.15 —-0.11

1.90
1.99

—0.39
—0.31
0.40
—0.66
0.15
—1.43

0.27
—1.03
4.31
-2.70

0.25
—2.14
—0.35

0.08
—-2.13

0.50

2.06
—4.06
—-1.76

0.26

0.46
—0.01
1.13
4.50

in the second. A must first be reduced to tridiagonal form by nag_dgebrd (f08kec). The program then
calls nag_dorgbr (f08kfc) twice to form () and PT, and passes these matrices to nag_dbdsqr (f08mec),

which computes the singular value decomposition of A.

9.1 Program Text

/* nag_dorgbr (f08kfc) Example Program.

*

* Copyright 2001 Numerical Algorithms Group.

*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)

{
/* Scalars */

Integer i, ic, j, m, n, pda, pdc, pdu, pdvt,

Integer e_len, tauq_len, taup_len;
Integer exit_status=0;

NagError fail;

Nag_OrderType order;

/* Arrays */

double *a=0, *c=0, *d=0, *e=0, xtaup=0,

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al(J-1)*pda + I - 1]
#define VT(I,J) vt[(J-1)*pdvt + I - 1]

JO8kfc.4

*taug=0,

d_len;

*u=0,

*vt=0;

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

#define U(I,J) ul(J-1)*pdu + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define VT(I,J) vt[(I-1)*pdvt + J - 1]

#define U(I,J) ul(I-1)*pdu + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("£08kfc

/* Skip heading
Vscanf ("s*["\n]

in data file =x/

")

for (ic = 1; ic <= 2; ++ic)
{
Vscanf ("$1d%1d%*["\n] ", &m, &n);
d_len = n;
#ifdef NAG_COLUMN_MAJOR
pda = m;
pdc = n;
pdu = m;
pdvt = m;
e_len = n-1;
taug_len = n;
taup_len = n;
#else
pda = n;
pdc = n;
pdu = n;
pdvt = n;
e_len = n-1;
taugq_len = n;
taup_len = nj;
#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) |
1 (c = NAG_ALLOC(n * n, double)) |
1(d = NAG_ALLOC(d_len, double)) |
! (e = NAG_ALLOC(e_len, double)) |
! (taup = NAG_ALLOC(taup_len, doub
! (taug = NAG_ALLOC(taug_len, doub
1 (u = NAG_ALLOC(m * n, double)) |
(vt = NAG_ALLOC(m * n, double))
{

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥
/* Read A from data file */
for (i = 1; i <= m; ++1i)
{
for (3 = 1; j <= n; ++3)
Vscanf ("$1f", &A(i,3));
¥
Vscanf ("sx[*\n] ");
/* Reduce A to bidiagonal form */
f08kec(order, m, n, a, pda, 4, e,
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from f08kec.\n%s\n",
exit_status = 1;
goto END;
b
if (m >= n)
{
/* Copy A to VT and U */
for (i = 1; 1 <= n; ++1)
{
for (j = 1i; j <= n; ++3)
[NP3645/7]

|
|
|
|
le
le
|
)

tauq,

fO8kfc

Example Program Results\n\n");

)) 1
)) 1

taup, &fail);

fail.message);

f08Kfe.5

fO8kfc NAG C Library Manual

}
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= MIN(i,n); ++3j)
U(i,j) = A(i,3);
}

/* Form P**T explicitly, storing the result in VT =*/
f08kfc(order, Nag_FormP, n, n, m, vt, pdvt, taup, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08kfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Form Q explicitly, storing the result in U */
fO08kfc(order, Nag FormQ, m, n, n, u, pdu, tauq, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08kfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute the SVD of A *x/
f08mec (order, Nag_Upper, n, n, m, 0, d, e, vt, pdvt, u,
pdu, c, pdc, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8mec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print singular values, left & right singular vectors =*/
Vprintf ("\nExample 1: singular values\n");
for (i = 1; i <= n; ++1i)
Vprintf ("%8.4f%s", d[i-1], i%8==02"\n":" ");
Vprintf ("\n\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, n, vt, pdvt,
"Example 1: right singular vectors, by row", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf ("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, u, Pdur
"Example 1: left singular vectors, by column", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
¥
else
{
/* Copy A to VT and U */
for (i = 1; i <= m; ++1i)
{
for (3 = 1i; j <= n; ++3)
VT(i,j) = A(i,]);
3
for (i = 1; 1 <= m; ++1)
{

for (3 = 1; j <= i; ++3)

f08kfe.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8kfc

U(i,j) = a(i,3);
¥
/* Form P**T explicitly, storing the result in VT =*/
fO8kfc(order, Nag FormP, m, n, m, vt, pdvt, taup, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08kfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Form Q explicitly, storing the result in U */
fO08kfc(order, Nag FormQ, m, m, n, u, pdu, tauq, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08kfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute the SVD of A */
f08mec (order, Nag_Lower, m, n, m, 0, d, e, vt, pdvt, u,
pdu, c¢, pdc, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8mec.\n%s\n", fail.message);
exit_status = 1;
goto END;

3
/* Print singular values, left & right singular vectors */
Vprintf ("\nExample 2: singular values\n");
for (1 = 1; 1 <= m; ++1)
Vprintf ("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf ("\n\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, vt, pdvt,
"Example 2: right singular vectors, by row", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, m, u, Pdur
"Example 2: left singular vectors, by column", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x0O4cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
¥
END:
if (a) NAG_FREE(a);
if (c) NAG_FREE(c);
if (d) NAG_FREE(4);
if (e) NAG_FREE(e);
if (taup) NAG_FREE (taup);
if (tauqg) NAG_FREE (tauq);
if (u) NAG_FREE (u);
if (vt) NAG_FREE(vt);
}
return exit_status;

[NP3645/7] f08kfe.7

fO8kfc NAG C Library Manual

9.2 Program Data

f08kfc Example Program Data
6 4 :Values of M and N, Example 1

-0.57 -1.28 -0.39 0.25

-1.93 1.08 -0.31 -2.14

2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08

0.15 0.30 0.15 =-2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

4 6 :Values of M and N, Example 2

-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

9.3 Program Results

fO08kfc Example Program Results

Example 1: singular values
3.9987 3.0005 1.9967 0.9999

Example 1: right singular vectors, by row
1 2 3 4
0.8251 -0.2794 0.2048 0.4463
-0.4530 -0.2121 -0.2622 0.8252
-0.2829 -0.7961 0.4952 -0.2026
0.1841 -0.4931 -0.8026 -0.2807

Example 1: left singular vectors, by column
1 2 3 4

1 -0.0203 0.2794 0.4690 0.7692

2 -0.7284 -0.3464 -0.0169 -0.0383

3 0.4393 -0.4955 -0.2868 0.0822

4 -0.4678 0.3258 =-0.1536 -0.1636

5 -0.2200 -0.6428 0.1125 0.3572

6 -0.0935 0.1927 -0.8132 0.4957

Example 2: singular values
7.9987 7.0059 5.9952 4.9989

Example 2: right singular vectors, by row

1 2 3 4 5 6
-0.7933 0.3163 -0.3342 -0.1514 0.2142 0.3001
0.1002 0.6442 0.4371 0.4890 0.3771 0.0501
0.0111 0.1724 -0.6367 0.4354 -0.0430 -0.6111
0.2361 0.0216 -0.1025 -0.5286 0.7460 -0.3120

D w N R

Example 2: left singular vectors, by column
1 2 3 4

0.8884 0.1275 0.4331 0.0838

0.0733 -0.82064 0.1943 -0.5234

.0361 0.5435 0.0756 -0.8352

0.4518 -0.0733 -0.8769 -0.14606

S w N R
|
(@]

08K 8 (last) [NP3645/7]

	f08kfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

